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A modified St Venant principle is formulated, governing the decay of the asymptotically dominant part of the 
stress-strain state due to a system of forces applied to an edge of a thin elastic body Four conditions for the 
satisfaction of the modified St Venant principle are derived and the possibility of using them to construct 
iterative processes for integrating the general equations of the theory of elasticity is established. 

1. A shell is taken to be a thin three-dimensional body whose stress-strain state (SSS) is described by 
the static linear differential equations of the isotropic theory of elasticity. To fix our ideas we shall 
assume that the equations are taken with respect to the traditional triorthogonal coordinates 

R = 4%, 82) + hn 

and that the faces of the shell are given by the equations p3 = &q (where q is the half-thickness). 
The main aim of this paper is to construct an iterative process for integrating the equations of the 

theory of elasticity, in which the first approximation should obey the theory for calculating thin shells. 
Note that if the faces p3 = &rl of the shell are not fixed, then its complete SSS composed of internal 

and boundary SSSs (boundary layers), localized near the edges or other stress concentrators of the 
shell. We accordingly observe the rule that is traditional in asymptotic methods in which one separates 
as much as possible the construction of the internal SSS from the construction of the boundary layers. 

From a mathematical point of view this is justified by the fact that each type of SSS has its own 
features and requires its own mathematical techniques. From a physical point of view the separation 
is also rational because the practical value of data on the internal SSS and on the boundary layers are 
far from the same. 

To achieve this separation it is natural to use the St Venant principle. However, as will be shown 
below, it cannot be applied in its canonical form. 

This paper formulates a modified St Venant principle designed to be applied to the general theory 
of shells. It is not related to the total decay of the effect of the applied external forces, but only treats 
the “principal” decay, i.e. the decay of its asymptotically dominant component. An iterative process 
for integrating the equations of the theory of elasticity is discussed and coordinated with the modified 
St Venant principle. 

2. An internal iterative process (giving the internal SSS) [l-3] can be implemented with a variable 
original accuracy, i.e. when constructing the original approximation an error of a different order is 
allowed. We will speak of iterative processes, constructed up to hP, and call p the accuracy 
characteristic, if when deriving the leading approximation all terms of order O(hr) with y > p are 
omitted in each separately taken equation. (An expression of O(h”) cannot always be taken to be an 
asymptotic error estimate.) The quantity h is taken to be a dimensionless half-thickness. 

The most important internal iterative processes are constructed below with accuracy characteristic 
p = 2 - 2q (where q is the variation index of the required SSS in the variables pi, &). 
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For such a p the differential equations of the internal iterative process in the leading approximation 
are equivalent to the Kirchhoff-Love equations [4]. We will use the latter since they are better known. 

The iterative processes for the boundary layer are also described in the literature. For an accuracy 
characteristic p = 1 - q its implementation reduces to the integration of differential equations for the 
anti-plane and plane problems of the theory of elasticity [l, 2,471. 

Thus the problem of the separated construction of differential equations in the theory of thin elastic 
bodies can be considered solved. We now turn to the separation of boundary conditions, i.e. to the 
problem of what boundary conditions should be assigned to the internal and boundary-layer 
differential equations. We will confine ourselves to the case when the stresses at the shell edge lying 
on coordinate surface PI = 0 are specified, there are no body forces, and stresses at the faces p3 = +q 
vanish. 

Suppose, for example, that stresses orj are specified at the PI = 0 edge. Then the corresponding 
three-dimensional boundary conditions can be conveniently expressed by the equations 

[( (i) U a,j 

(b) 
+alj )I = aoqj (j = 1,2,3) 

PI -0 
(2.1) 

where u = 1 + f33/Rz, a0 = a 1 alEo, l/R* is the normal curvature of the &-coordinate line, the super- 
scripts i and b imply that the given quantity is related to the internal or boundary SSS, and ‘lj, which 
define the boundary values of the stresses, are given functions of the variables &, p3. 

We shall assume that o$. has been constructed by means of an internal iterative process with 
accuracy characteristic p = 2 - 2q, and we will express the corresponding results in terms of the 
Kirchhoff-Love theory, using the notation of [4]. This means that when PI = 0 

From this, using (2.1), we obtain 

and two similar equalities which follow from the second and third formulae of (2.2). 
We integrate (2.3) with respect to p3 over the interval (-TJ, +q) and obtain 

q+o +I’ [ 
- '1 

(bqp 
+‘I + I qt 

1-O 
4% = I aor,d& 

- ‘1 

From this we conclude that if the natural decay condition 

(2.2) 

(2.3) 

(2-4) 

is assumed to be valid for the boundary SSS then for the internal SSS we have the corresponding 
boundary condition 

(2.5) 

which is often applied in shell theory on the basis of physical considerations. 
A correspondence of the form (2.3) t) (2.5) also holds for all other decay conditions for a boundary 

SSS similar to condition (2.4). 
Thus, if the boundary SSS of a shell obeys the canonical St Venant principle, then five conditions of 
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the form (2.5) should be imposed on the internal SSS. This would lead to the well-known discrepancy 
with the order of the two-dimensional differential equations in thin shell theory. This is a consequence 
of the unjustified application of the canonical St Venant principle. 

The separation of the boundary conditions in principle has been achieved. In particular, the 
boundary conditions for the twodimensional differential equations of Kirchhoff-Love theory should 
be taken to be the relations that follow from the four correctly formulated decay conditions of the 
boundary SSS in the same way as (2.5) follows from (2.3). In order to obtain the edge conditions for 
the boundary SSS we must put 

'lj - 'lj (i) + 4:) (j = 1,2,3) 

and assume that 

- a,$‘, [ 1 
@#) (h) 

1-O ‘1 p,=o 6a05j 

Assuming that the internal SSS has already been constructed, one can find A$ from the first 
equality in (2.6), and consequently also determine @As a result the second quality in (2.6) determiues 
the required edge conditions for the boundary SSS. 

In Section 3 we formulate a modified St Venant principle. It describes the “dominant” decay and the 
four conditions which ensure such a decay. Using this principle the solution of the boundary-value 
problem of the theory of elasticity for thin bodies can be constructed as follows. 

1. Define the internal SSS of the shell to be the original approximation of the internal iterative 
process with accuracy characteristic p = 2 - 2g, i.e. construct it using the equations of Kirchhoff-Love 
theory. 

2. In the boundary SSS construct just the asymptotically dominant part, which decays. 
3. Of the three edge conditions of the original problem, formulated in terms of the three- 

dimensional theory of elasticity derive, using the above scheme, the four boundary conditions for the 
Kirchhoff-Love theory equations and the three edge conditions for the boundary SSS. 

4. Using the conditions of item 3 sequentially construct the original approximations for the internal 
SSS and the decaying part of the boundary SSS, which together constitute the original approximation 
of the required SSS. 

The formulations of the above boundary-value problems for internal and boundary differential 
equations are based on approximation arguments. Moreover, the scheme does not assume the 
construction of an asymptotically secondary non-decaying part of the boundary layer. All these errors 
can be formally removed by means of iteration. 

The two-dimensional Kirchhoff-Love theory occupies a central place in the above scheme. It 
enables one to investigate approximately a not-too-strongly varying SSS of a shell sufficiently far away 
from its boundary or other concentrators of the required SSS. (Note that the scheme described does 
not anticipate the case when the Kirchhoff-Love solution vanishes identically.) 

This apparently contradicts the literature which often refers to inadequacies inherent in Kirchhoff- 
Love theory and to the paradoxes which it somehow creates (see, e.g., [&lo]). However in all the 
refuting examples the theory is applied to cases for which it would not be used ‘according to the above 
definition. These are primarily problems in which explicit or disguised elastic boundary phenomena 
play a major part. Moreover, the refuting examples do not take into account the requirement that the 
variability of the required SSS is not excessive. We know that Kirchhoff-Love theory cannot be applied 
in the opposite situation. It is also inapplicable in the well-known “paradoxical” problem of the torsion 
of a strip, where at the comers of the strip the required SSS has infinite variability. 

In terms of the above approximation scheme one can, if necessary, also investigate the boundary 
SSS of the shell. This can be performed as a second stage of the calculation and reduces to solving the 
differential equations governing the decaying part of the boundary layer. 

We interpret our non-traditional approximation scheme for shell investigation by means of the 
following dual model for a thin elastic body. It can be thought of as the combination of a shell-model 
for the internal SSSs and a family of strip-models for the decaying part of the boundary layer. 
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The shell-model is the middle surface of a thin body, endowed with elastic properties corresponding 
to the Kirchhoff-Love hypotheses. 

The family of strip-models that represents the boundary layer need only be constructed near the 
edge. Assuming that the latter lies along the pi = 0 coordinate surface, we define each strip to be a 
part of the p2 = const coordinate surface adjacent to the edge. The variable 82 is the family parameter 
of the strip-models. We determine the elastic properties of the strips by assuming that their stresses 
and strains satisfy the complete system of equations of the three-dimensional theory of elasticity and 
that the stresses 02i 0 = 1, 2, 3) can be treated as interaction forces between the strips, whose form 
has to be chosen in the proper manner. 

In order for the SSSs of the shell-strips to decay, the edge forces oli 1 plco, must obey a number of 
requirements compatible with those for the shell-model, i.e. that number must be four. 

If one assumes, for example, that all the interaction forces in the family of strip-models vanish, the 
decay conditions transform into the five requirements of the canonical St Venant principle. This 
returns us to the previous disparity between the orders of the two-dimensional shell-model equations 
and the number of boundary conditions they must obey. The disparity is removed if in the strip-model 
differential equations we take into account the pairing-off of tangential stresses, and assume that the 
tangential interaction forces ozi, 02 are non-zero and that only the normal force 022 vanishes. 

3. We will carry out calculations exemplifying the arguments of Section 2 for the case when a three- 
dimensional thin shell degenerates into the semi-infinite layer G{ai s - c a~ < +m; -h s a3 c +h} 
where the (ai, %, 03) are Cartesian coordinates. 

We will explain below why this does not lessen the generality of the final conclusions. 
We shall assume that the layer G satisfies the homogeneous face conditions 

03klc13-*h 
-0 (k-1,2,3) 

and the inhomogeneous edge conditions 

(3.1) 

(3.2) 

lbgether they mean that for the layer G we consider an SSS that has been caused by forces R with 
components rU acting at the edge al = 0. 

Thus, in the dual model of Section 2, the shell-model is taken to be a semi-inlinite layer, and the 
family of strip-models is a collection of semi-infinite strips g(q) = (01~ B 0; -h 2 a3 s +h} whose 
position at the edge is specified by the parameter o+ 

We begin with the linear equations of the isotropic theory of elasticity in Cartesian coordinates and 
write them as follows: 

(3.3) 

(Henceforth i andi are always taken to be indices having the values indicated here.) In (3.3) the SSS 
of the layer G has been split into two terms 

P = (~12, ~23; ~2)~ Q = (oil, ($2, o3.3, 013; “‘19 2)3) (3.4) 

The letters P and Q within the parentheses of (3.3) show which of the required quantities occur in the 
given term on the left-hand side. Symbols indicating the derivatives to be found in that term are shown 
after the semi-colon. 

It is assumed that the equations for the layer G have been reduced to dimensionless form: the 
stresses a,, (m, n = 1,2,3) are in terms of Young’s modulus, the displacements U, are in terms of the 
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half-thickness Q, and cxl, q!, a3 h are Cartesian coordinates and the half-thickness in 
characteristic length L. 

The actual differential expressions Q, di, Di, dj in (3.3) are 

D4(Q;&,-$-) -2+$ d+;-+-)-% 

1043 

terms of some 

P-5) 

o,(Q;-&.$-) -~-b~,-v(022 +“33)1q de -0 

- 4% - ~(a,, + a,,)]. 

08(Q+$) -2-[a,,-v(u,, +a& d, -0 
I 

4(Qi-&-. a;) 

3 

hl - -au, +%-2(l+v)u,,, d9 -0 
3 au, 

4. We will treat Eqs (3.3)-(3.5) as strip-model equations, represent the grouped variables in them as 
sums 

P = P’ + p.“; Q = Q’ + Q” 
(4.1) 

and require P’ and Q’ to be the decaying part of the boundary layer, and P’ and Q” to be the remaining 
non-decaying part. In Section 5 it is shown that this can be achieved if P and Q’ are governed by the 
equations 

-0 (16iS3) 

and F” and Q” obey the questions 

(4.2) . 

(4.3) 

(4.4) 
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The systems (4.2X4.4) are of course collectively equivalent to system (3.3). In order for the 
boundary equations (3.1) and (3.2) to be satisfied also, it is necessary to impose the conditions 

c73k -0 (a, - *II); a;, - qk (a, -0) (4.5) 

,, 

a,=0 (a,-*h); a;;-0 (al-O), k-1,2,3 (4.6) 

on P, Q’ and P”, Q”. 
Here and henceforth it is assumed that the method described in Section 2 for separating the bound- 

ary conditions has already been employed and that rlk is taken to be the part of the stresses specified 
at the edge j3i = 0 which corresponds to the decaying part of the boundary SSS. (It is of course 
assumed that the ru have also been reduced to dimensionless form in a suitable manner.) 

5. We will now consider the formulation of a modified St Venant principle for the SSS P, Q’. Three 
out of the nine equations of system (4.2) (4.3) obeyed by P and Q’ express the balance of forces on a 
differential element of the strip-model. These equations can be written in expanded form as 

Xl -aa,,+ 0 (%2 ; ‘%3 

aa, da, aa, 

0, x2 _ au2l ; ‘“23 

aa, da, 

(5-l) 

x3 
au31 au32 du33 0 i-+-+-- 
da, aa2 da3 

The following boundary-value problem must be solved for the system of equations (4.2), (4.3) (it is 
appropriate to call them the decaying SSS equations): in an infinite half-strip g construct a solution 
satisfying conditions (4.5) at the faces of 01~ = +h and at the edge al = 0 and decaying at infinity. 

We shall assume that the decay is as strong as required in subsequent arguments. The boundary- 
value problem has a solution only when certain necessary conditions, expressing the balance of the 
external forces on the entire strip g, are satisfied. They will be identified with necessary and sufficient 
conditions for the modified St Venant principle to be applicable. 

The equalities 

JWg -JX2& -JWg =J(a3X, -qX,)dg = 0 (5.2) 

follow in an obvious manner from (5.1), the range of integration being the domain occupied by the 
strip g. 

We will use the following techniques, usually employed in the theory of elasticity, when transforming 
these integrals we change the order of integration over al, a3, using integration by parts with respect 
to one or other of al and a3, and transforming the integrands using equalities (5.1). 

Moreover, we will use the face and edge conditions (4.5) and also postulate decaying properties. 
Using all this we can transform the first equality of (5.2) as follows: 

jhda3% ?da, +-&Jda3% u;,da, +i da, J +h ao,,da3 -0 

-h 0 -h aa3 
(5.3) 

In the second term on the left-hand side we perform integration by parts with respect to al. We 
obtain 
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Here the first term on the right-hand side is zero from the assumption that diz decays sufficiently 
rapidly as 01~ increases. In the second term one can replace ad,, / &X, by -&$J / &s, using the second 
equality of (5.1). Hence, performing the integration over a3 and using the face conditions (4.5), we 
again obtain zero. This means that the second term on the left-hand side of (5.3) vanishes. 

In a similar manner, having performed the integration over CX~ and used the face conditions (4.5), 
we conclude that the third term on the left-hand side of (5.3) also vanishes. Consequently 

~X,dg =I;, da3a 2da, 
1 

Hence, using the edge conditions (4.5) and the decaying conditions for al = 00, we have the first 
condition for satisfying the modified St Venant principle 

‘j q,da3 -0 
-h 

(5.4) 

After similar calculations two other conditions are obtained from the second and third equalities in 

(5.2) 

yq,da, =jh'llda,+$I;hqza,da, =0 
-h -h 

and the fourth equality of (5.2) gives 

+h 

Ja,r,,da,-I-0, Z=2j-$ ' (ae12>dg 
-h 2 

(5.5) 

(5.6) 

Relations (5.4)-(5.6) are also the four required conditions for the existence of a decaying SSS P, Q 
generated by the edge forces ru. 

In Section 7 we will show that Z”, Q’ exceed P”, Q” in the well-known asymptotic sense. Hence one 
can take the properties of P and Q’ that are obtained here to be a modified St Venant principle. It 
amounts to the fact that the requirements (5.4)-(5.6) are the “dominant” decaying conditions for that 
SSS which is generated by the edge forces. We emphasize that the modified St Venant principle, unlike 
the canonical one, agrees with the dual model of a thin elastic body (Section 2), because for the shell- 
model it only requires four boundary conditions to be substituted into it. From the physical point of 
view the reduction of the number of decay conditions is explained by the fact that the modified St 
Venant principle is directed towards a family of strip-models in which shear stresses are not excluded 
from the R = const faces. Hence it is unnecessary to impose a fifth condition (i.e. the absence of a 
torque at the edge) in order to obtain St Venant decay. 

6. The meaning of the first three decay conditions (5.4)-(5.6) is obvious. They imply the three well- 
known boundary conditions of two-dimensional plate theory 

‘I; = S,, = N, + aH,, 1 as = 0 

We will discuss the integral term Z of Rq. (5.6). 
We transform this quantity assuming, as was discussed in Section 4, that ru in the second equation 

of (4.5) satisfies the conditions of the modified St Venant principle. 
To calculate Z one needs to know the stress di2 throughout the domain g, i.e. to have, for a fixed pZ, 

the decaying solution of the anti-plane problem in the halfstripg with face and edge conditions (4.5). 
Here, if we restrict ourselves to the asymptotically dominant parts of the solution, cr& is to be 
understood as the solution of the anti-plane problem satisfying conditions (4.5) with k = 2. 

Because c& satisfies, by hypothesis, the decay condition when 01~ = 00, the problem in question has 
a solution in a very general case. It is simply constructed using trigonometric Fourier series [4, 111. 
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Substituting this solution into the expression for I and integrating over ol, 03, we obtain the required 
result. For specified b it gives a correction to the quantity Gr in the corresponding boundary condition 
in Kirchhoff-Love theory. In the general case this relation is expressed as a numerical series which 
depends on the parameter p2. 

In the specific and not too complex cases that appear in most problems of practical importance, the 
final result can also turn out to be simple. 

Suppose that in the second edge condition (4.5) 

s 
r,,-A+Ba,, A-- 

2Eq' 

B 3H 

=m 

where A and B are given dimensionless functions of o(2, the quantities S and H are the boundary shear 
force and the boundary torque, and IJ is the actual half-thickness. 

Substituting (6.1) into the frrst decay condition (5.5) we obtain S = 0. Consequently, A = 0. 
We denote by Crz(al, cz3) the shear stress given by the decaying solution to the anti-plane problem 

in the half-strip g with the condition 

Z12=a3 (a, =O) 

Because the above anti-plane problem is linear and its formulation does not depend on p2, we have 
drz = B&. Hence one can write 

I aH 
I=310----- '0 

1 co 

EL2 aa, ’ 
= JJ 4 i” &a,% 

0 -h 

(where L is the length-scale referred to in Section 3 and defined by the formulae n = Lh). 
By the method described above we obtain 

,,_E~ ’ 
Jc5 n-1 (2n-I)5 

-0.4200 

(calculations in other notation are given in [4, p. 4651). 
The first term of (5.6) can in an obvious way be reduced to 

+h 

/ ‘Ilw% 
-11 

Hence, omitting the common factor (En2)-‘, we obtain, instead of (5.6), the so-called reduced 
boundary condition for two-dimensional plate and shell theory 

G+1.2600haHlao2 -0 

Thus, in the case under consideration, all four decay conditions for the modified St Venant principle 
correspond to boundary conditions described in the literature of the Kirchhoff-Love theory (see, for 
example, [4]). They also take into account the classical Kelvin-Tait correction to the shearing force and 
the correction to the bending moment G, first observed when constructing the so-called reduced 
boundary conditions in [ 111. (The present paper shows that this result is not general: strictly speaking, 
it is only true for cases when the edge force has the form (6.1).) 

7. We now compare the asymptotic orders of the quantities P, Q’ and P”, Q”. The main importance 
of this question is that the answer will tell us whether it is possible to use the modified St Venant 
principle in the general theory of shells in the same way as the canonical principle is used in the 
strength of materials, i.e. whether there is any meaning to two-dimensional shell theory. Below, 
without any pretence at rigour, we give arguments relevant to this problem. 
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‘lb determine P and Q’ it is necessary to solve Eqs (4.2) and (4.3) using boundary conditions (4.5). 
The formulation of these boundary conditions in explicit form does not depend on the small para- 
meter h. However, P’, and Q’ are by assumption decaying solutions, and it is natural to expect that they 
will vary exponentially with al with large (as h + 0) exponents. We therefore make the variable scale- 
change traditional in such situations by putting 

QI = h&, a2 -hCt2, a3 =&3, uk -hWk (k = 1,2,3) (7.1) 

and postulating that differentiation with respect to & no longer changes the asymptotic order of the 
required functions. 

The powers of h in (7.1) are chosen using the following arguments: the power of h in front of 53 
corresponds to the well-known fact that near the edge the variability index with respect to cc3 for the 
shell boundary layer is equal to unity. The same power should occur in the formula for E,r: only in that 
case does one obtain equations describing boundary layers whose asymptotically dominant terms are 
identical with those in the equations of the plane and anti-plane problems of the theory of elasticity. 
This agrees with intuitive representations of boundary layers and is found to be in complete agreement 
with the nature of the boundary-value problems governing P and Q’. The quantity K in the formula 
for q is taken to be a specified number (0 < K d 1). It is the variability index with respect to the 
variable a~ of the quantities rll, r12, r13 in the edge conditions (3.2). The index of h in the last formula 
in (7.1) will be discussed below. 

Introducing (7.1) into (3.3) and (3.5), we obtain formulae for changing to new independent variables 
for Di, Di, di, d 

(7.2) 

h = 0 when p = 1,4, 5; h = 1 when p = 2,3,6,7,8 

Here the subscript p can take values of i or j, R can be taken to be either P or Q, and the bar over 
the R means that in (3.4) the displacements uk should be replaced by wk, i.e. instead of (3.4) one should 
use the formulae 

Using (7.2) and (7.3), we can write system (4.2), (4.3) in the form 

Specifying @’ by the formula 

we obtain for a Q{ the equations 

(7.4) 

(7.5) 

(7.6) 

(7.7) 
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(7% 

The first of these should be solved using the edge conditions 

and to the second one should add the appropriate homogeneous edge conditions. 
Thus, for F Q& pi, we obtain boundary-value problems in which the small parameter h does not 

occur. Furthermore, we note that in all the above problems it is only the differential equations that are 
inhomogeneous, or the edge boundary conditions. We interpret these inhomogeneities as external 
(loading or deformational) effects and make use of the following conditional notation 

(7.9) 

These mean that the quantities on the right of the arrows are the cause of the appearance of the 
stresses or displacements on the left of the arrows. Square brackets are used in [7.9] in those cases 
when the “external effects” are at the edge, i.e. applied to the coordinate line & = 0, and curly 
brackets are used when the “external effects” are applied to a two-dimensional segment adjacent to t1 
= 0. (We recall that here we are talking about quantities with a single prime, i.e. possessing St Venant 
decay.) 

The equations governing P” and Q” are briefly described by (4.4). Expanding the latter using (3.5) 
we find that in expanded form they are a complete inhomogeneous set of elasticity equations. Its 
inhomogeneity is represented by the terms d@‘, a / ao$, i.e. it depends only on the quantity Q’, which 
can be considered to be known, assuming that the decaying part of the SSS has already been 
constructed. 

System (4.4) should be solved using the homogeneous boundary conditions (4.6). Hence one can 
again assume that the corresponding SSS has been generated by “external effects” and write yet 
another relation of the form (7.9) 

(P",Q")~{dj<Q'; d/da,)} (7.10) 

As the basis of the following arguments we assume, without any pretence at rigour, that not too far 
away from the edge the asymptotic orders of the various SSSs can be identified with the order of the 
generating “external effects”. Here, however, we take into account that in (7.9) and (7.10) the near- 
edge (in curly brackets) “external effects” have the St Venant form, i.e. they decay exponentially with 
an exponent of order h-‘. Hence, to relations (7.9) and (7.10), we add the conditional equality 

IAl = WI (7.11) 

This means that if the “external effects” at the edge have asymptotically identical intensities, 
then in asymptotic discussions the near-edge “external effects” must be used with an additional factor 
ofh. 

The formulation of the boundary-value problem for P” and Q” does not depend on the small 
parameter h. Furthermore, no St Venant decay is assumed for P” and Q”. Hence for relations (7.10) 
there is no need to resort to the lirst and third scale-transformation formulae; it is sufficient to use the 
second. This means that of the transformation formulae of the form (7.2) we now only need to use one 

Relation (7.10) is accordingly replaced by the relation 
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(7.12) 

When comparing the asymptotic orders of P, Q’ and P, Q” using the superposition principle, we 
decompose the general case into two (which corresponds to decoupling into plane and anti-plane 
boundary layers). 

case 1: rr2 - ho; (rrr, ri3) = 0. 

Case 2: t12 = 0; (rrr, rrs) - ho. 

Here - denotes asymptotic commensurability, and the zero exponent for h was chosen to fix our 
ideas. 

In Case 1, using the rough assumption made above, it follows from (7.2), (7.6) (7.9) and (7.12) that 

p_jf, e;, -0, Q; -h’-‘, <P,Q') -ho 

from which relation (7.12) gives 

(P”,Q”) _h2-2r 

In the same way we find in Case 2 that 

(P’,Q’)-ho; (P",Q") -h’+ 

-- 
(These arguments refer only to stresses, so that the difference between P, Q and P, Q is irrelevant and 
the bars have therefore been dropped.) 

It has thus been shown that the use of a modified St Venant principle can be justified in shell theory 
just as the canonical principle can be used in the strength of materials. Here the necessity to change 
over to so-called “reduced boundary conditions” should not be considered as a defect of the Kirchhoff- 
Love theories, but as a reflection of the details of the modified St Venant principle. 

In [12,13] the so-called shearing theories of plates and shells were compared with two-dimensional 
theories obtained asymptotically. We will continue this discussion using the results obtained here. 

We can assume that the dual model for a thin elastic body that we have proposed corresponds to a 
dual system of “shearing hypotheses”. Part of this follows from the properties of the shell-model 
carrying the internal SSS. It is related to the assumption of a linear distribution of displacements along 
the thickness (which is not explicitly stated, but is used in a signilicant manner because, as has been 
shown in [4], the variational principles which lie at the heart of shearing theories depend on such 
properties). 

The other part of the “shearing hypotheses” reflects the properties of the family of strip-models 
carrying out the boundary SSS. This includes the assumption of the tangential direction of the 
interaction forces between the strips. It gives rise to the need, when investigating the boundary SSS, 
to take into account the shears, because otherwise the properties of the two parts of the dual model 
will not “match”. However, it remains unclear whether taking account of the shears is sufficient for the 
correct construction of the boundary SSS. It is also unreasonable to assume that the refinement of the 
internal SSS can be achieved merely by taking into account the shear only. Furthermore, “shearing 
hypotheses” are considered to be standard for the internal and boundary SSS, although there is no 
reason why taking into account the shear is a priority not just for the boundary, but also for internal 
SSS. From the results of [12, 131 it follows that this is simply not the case. 

In conclusion we note two properties. 
1. The replacement of the shell by a semi-infinite layer G in Section 3 does not reduce the generality 

of the conclusions we have reached, although it leads to a considerable simplification in the 
calculations. The latter are essentially identical with those which would have been performed in the 
general tri-orthogonal coordinate system and are described in detail in [4]. 

2. Also, for simplicity, this paper has considered only the case when all the stresses on the edge are 
specified, i.e. there are no initially unknown reaction forces at the edge clampings. Techniques for 
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finding the reduced boundary conditions and, consequently, for solving the problems raised here when 
there is edge clamping, are described in [4, 111. 
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